Tag Archives: Des O’Grady

AIChE Annual Meeting 2012

I’m really looking forward to attending the annual American Institute of Chemical Engineers (AIChE) meeting in Pittsburgh, PA this year. It is always a great opportunity to meet excellent scientists working in very diverse areas. As a chemical engineer it is also nice to focus on chemical engineering for a change! – since many of the conferences I attend are chemistry orientated.

It is also great to see so many papers being presented that Continue reading

Designing Effective and Efficient Crystallization Processes

This is the sixth blog post in a special series dedicated to crystallization.  In case you missed the previous posts in the series, they are available here:

Previously, we looked at a case study that neatly illustrated the concept that slow supersaturation generation often results in a growth dominated process that is typically repeatable. As a rule of thumb, slow cooling works great – but its main drawback is the extended cycle times that often result. To overcome this problem, a common technique often used is non-linear cooling.

If we dive a little bit deeper into the governing equations of crystal growth and nucleation.. Continue reading

Common Ways to Reduce Solubility and Drive Crystallization

This is the second blog post in a series dedicated to crystallization. In case you missed the first in the series, you can find it here: Introduction to Crystallization and Precipitation.

Reduce Solubility and Drive CrystallizationThe starting point for most crystallization processes is a saturated solution. Crystallization is generally achieved by reducing the solubility of the product in this solution by cooling, antisolvent addition, evaporation* or some combination of these methods. Another common method used to drive crystallization is via a chemical reaction where two or more reactants are mixed to form a solid product insoluble in the reaction mixture; a common example of this would be the reaction of an acid and a base to form a salt. Continue reading

工艺过程参数对过饱和度、晶体大小与形状的影响

这是结晶专题系列的第五个博贴。如果您还没有看此系列中前面的博贴,可以在此找到它们:

下图显示了过饱和度通过成核和增长间的竞争与晶体大小分布的关系。在本博贴里,我们来看如何通过调节工艺过程参数(比如反溶剂添加速率)使过饱和度能够得到控制。在下一个博贴里,我们会稍微深入一点进入到结晶动力学的基础;而现在让我们来研究一个有意思的案例:用原位监测工具来监测过饱和度并跟踪相应对晶体大小分布的影响。

这个例子考察对不加晶种的苯甲酸从乙醇-水中结晶出来的过程,主要观察反溶剂添加速率对晶体大小、形状和分布的影响。用水作反溶剂,进行两个不同添加速率的实验:一个低速 (0.1g/s)、一个高速(0.2g/s)。过饱和度用ReactIR来监测,颗粒数与尺寸用FBRM 来分析,晶体的大小与形状用PVM来确定。

将制备好的苯甲酸在乙醇中的不饱和溶液维持在25ºC下恒温。苯甲酸是一个有机化合物,难溶于水但溶于乙醇,文献中没有报道它有已知多晶型。在固定的0.1 g/s 和0.2 g/s的速率下添加水,它们导致的结晶过程用原位工艺过程分析工具来监测。

图1表示出每一实验所得到的溶液浓度降低曲线与溶解度曲线相重叠。从饱和度的变化可以看出溶液开始时不饱和的,随着水的加入溶液浓度逐渐超过溶解度进入过饱和。随着晶核的生成溶液的浓度不断降低,并保持接近溶解度曲线, 在反溶剂添加的终点降至溶解度。过程中过饱和度随反溶剂浓度的实时变化在图2中可以清楚地看出。

很明显,在较高的添加速率下,过饱和度较高 ­—  一个重要的结果!一般情况下,快速的冷却或添加速率导致高的过饱和度。这是因为晶体的成核与增长速率不足以立即消耗掉所产生的过饱和度,所以随着结晶过程的进展过饱和度便得以积累。

从前面讲过的内容我们知道过饱和度高会导致成核主导的结晶过程,晶体增长甚少。图3表示的是在上述两个实验的终点FBRM测得的颗粒分布结果 ­:很明显,快速添加所得的分布显示出大量更多的小颗粒,而慢速添加所得的分布则显示出更多的大颗粒。

不仅仅是晶体大小受工艺参数变化的影响,晶体的形状也受影响。实验终点的PVM 图像表明了这一点,即慢速添加导致了大的、规则形状的长方板,而快速添加产生了细针状晶体致使容易结块。

颗粒分布

颗粒形状

上述研究案例表明了工艺过程参数的变化可以直接影响过饱和度的实时程度乃至晶体的大小、分布及形状。

在本系列的下一个博贴里,我们会稍微深入一点进入到结晶动力学的基础。同时,您也许会对这一网络研讨会和文章感兴趣:

为开发与优化结晶工艺过程进行”无”标定过饱和度评估与控制

M. Barrett, M. McNamara, H. Hao, P. Barrett, and B. Glennon, “Supersaturation tracking for the development, optimization and control of crystallization processes [为开发、优化和控制结晶工艺跟踪过饱和度],” Chemical Engineering Research and Design, vol. 88, Aug. 2010, pp. 1108-1119.

如果您有兴趣与其他结晶工作者或爱好者讨论,考虑加入已有600多成员的LinkedIn结晶社团

Introduction to Crystallization & Precipitation

Crystallization touches every aspect of our lives from the foods we eat and the medicines we take, to the fuels we use to power our communities. The majority of pharmaceutical products go through at least one crystallization step during their manufacture. Salt and sugar are delivered to our dinner tables as crystals. The unwanted crystallization of gas hydrates played a role in the recent Deepwater Horizon oil spill. Continue reading

Crystallization Processes in Polymer-Based Materials – Call For Papers

While browsing through the LinkedIn Crystallization Community yesterday, I noticed a discussion started by Mircea Chipara indicating that the Journal of Materials Science is accepting contributions on the topic of Crystallization Processes in Polymer-Based Materials. Continue reading

What is Happening in Crystallization

Here is what is happening in crystallization: Continue reading

过饱和度:晶体成核与增长的驱动力

这是结晶专题系列的第三个博贴。如果您还没有看此系列的第一和第二个博贴,可以在此找到它们: 结晶与沉淀介绍降低溶解度与驱动结晶过程的常用方法

过饱和度是液体析出结晶工艺过程的驱动力。 结晶科研人员们通过把结晶过程中的过饱和度控制在有效程度来获得对结晶工艺过程的控制。

过饱和度:在指定温度下溶液中溶质的实际浓度与其溶解度之间的差值定义为溶液的过饱和度。

下图示意出溶液过饱和度的概念,同时介绍亚稳态区宽度(MSZW)- 既出现初始结晶的动力学边缘。

过饱和度很关键,因为它是晶体成核与增长的驱动力。成核是新晶体产生的过程,或从溶液中自发生成(初级成核)或来自体系中已有晶体(间接成核)。晶体增长是指晶体的大小随溶液中的溶质进入晶格而增加的过程。这些通常相互竞争的机理过程会决定最终晶体大小的分布 ― 一个重要的产品属性。过饱和度与成核和增长之间的关系可由以下(简化了的)公式来定义:

G = 增长速率

kg = 增长常数

g = 增长级数

B = 成核速率

kb = 成核常数

b = 成核级数

ΔC = 过饱和度

对于有机化合物的结晶体系,增长级数的数值一般在1 与2 之间, 成核级数一般在5与10之间。当我们将理论曲线作图,便可以清楚地看到为什么控制过饱和度如此重要。在低过饱和条件下,晶体增长比成核速率快,导致较大的晶体颗粒分布。而在较高的过饱和度条件下,晶体成核与增长相比占主导,最终导致较小的晶体颗粒。这一图解将过饱和度与成核速率、增长速率、和晶体大小相关联,清楚地显示出在需要生成指定晶粒大小或分布指标时对过饱和度的控制是如何至关重要。

了解了晶粒大小如何取决于过饱和度,在本系列的下一个博贴里我们来看为什么晶粒大小很重要。与此同时,结晶珍宝图再一次显示出理解溶解度、亚稳态区宽度、尤其是过饱和度的重要性。

要获得更正式一些的信息,以下书籍是很好的起点:

 

如果您有兴趣与其他结晶工作者或爱好者讨论,考虑加入已有600多成员的LinkedIn结晶社团