Tag Archives: 颗粒

在线分析颗粒大小、形状、及数量的历史:Lasentec® FBRM®

Lasentec History二十五年来, FBRM® 技术一直用于实时监测工艺过程中自然存在的颗粒与液滴。自2001年收购了Lasentec® (Lasentech)之后,梅特勒-托利多不断地改进开发在线颗粒大小、形状、和数量分布的测量技术。目前,已有数千个FBRM® 和PVM® 系统安装在世界各地,从研发实验室到生产厂。

我想人们会有兴趣看看Lasentec®、FBRM® 和PVM® 技术的历史:

2011

新一代 FBRM® (G Series) 上市,在原位颗粒测量的准确性和灵敏度上具有突破性进展。

  • 通过软件对粘贴的颗粒进行校正,从而增强对工艺过程的理解
  • 对颗粒分布的高分辨率提供更准确的信息
  • 可互换的探头配置平台拓宽应用性
  • 增强的探头牢靠度减少维修服务次数

2009

梅特勒-托利多荣获Powtech/TechnoPharm 创新奖 ,奖励其将FBRM®应用于在线成粒过程的开发。

2007

小规模 19毫米直径的具有显微镜质量显像的PVM® ,即使是在高固体浓度下。

2002

8毫米设计直径的小型FBRM、和深入管道安装式FBRM®

2001

梅特勒-托利多收购Lasentec®

2000

19毫米直径压缩空气推动的FBRM®

1996

用于在线颗粒视像和测量的第一个PVM®

1990

第一个基于探头的、实时、原位颗粒特征分析FBRM®

1986

Lasentec® 因其离线FBRM®技术获得“研发一百强奖”(R&D 100 Award

增强对结晶工艺过程的理解

科学家与工程师们经常要面对的一个挑战是如何做到增强对结晶工艺过程的理解。

EasyMax为使这些科学家与工程师们完成大量的所需工作提供了一个即功能强大又使用便捷的实验平台。看到EasyMax已被他们欢迎采纳,尤其是针对结晶工作,使人感到欣慰。Simon Rea开发了一个方法,使EasyMax更适于颗粒特征分析:

结晶终于,您可以在您的EasyMax 里同时使用FBRM和PVM了! 这一新的PTFE封盖使您有可能观察到:

  • 多晶型/晶习的改变
  • 晶种添加行为
  • 相分离
  • 工艺过程中通常的颗粒/液滴的变化

并且,这可在体积小到30毫升条件下实现!当您要放大至1升时,您还可以把同一个PVM拿到那个规模的实验中使用

要通过例子看您可以在EasyMax 里同时使用FBRM和PVM来做什么,请浏览由固态制药团队(SSPC)的Mark Barrett所作的 从实验室到生产厂反溶剂添加结晶过程的优化与放大网络研讨会系列

高度的分辨率、快速的理解、直观的颗粒测量

在线颗粒大小测量技术被用于快速地:

  • 理解颗粒系统随工艺过程参数变化而发生的相应变化
  • 优化颗粒系统从而改进工艺性能及产品质量
  • 控制颗粒系统从而获得颗粒大小分布终点的一致性、批次的重复性、和工艺的稳定性

颗粒大小分析只有当原位颗粒测量方法具有代表性并容易理解时,人们才可能实现相应的工艺过程优化与控制。基于20年在线颗粒测量的经验,新一代的聚光反射测量(FBRM) 被重新设计后针对每一个实验具备更高的玄长测量分辨率,并且提供更加直观的信息。

科学家和工程师们用FBRM来跟踪工艺过程中自然存在状态下的颗粒与液滴。 新一代的FBRM技术 – FBRM G400 和 FBRM G600 – 增强了分辨率,同时提供对颗粒系统的直观理解。这使其使用者们可以在更短的时间内提高实验通量并改进产品质量。

请观看新的在线颗粒特征分析的突破性性能报告。

该报告的重点包括:

先进的信号处理

  • 更高的玄长分布分辨率为每一个实验提供更多的信息量
  • 粘贴颗粒的矫正改进信息的可靠性以及对工艺的理解

FBRM G400 先进的硬件开发

  • 可互换的探头平台改进多用适应性和可携带性
  • 改进的探头牢靠程度降低维修频率

结晶与沉淀介绍

结晶触及我们生活的方方面面,从我们吃的食品和用的药物到我们用来给社区生活提供能量的燃料。大部分医药产品的生产制造过程中至少有一步是结晶步骤。我们厨房里用的食盐和白糖均为晶体。不希望发生的气体水合物结晶现象在最近的墨西哥湾漏油事件中起了作用。

Crystallization

工作在世界各地许多企业的科学家和工程师们每天都需要对结晶工艺过程进行理解,优化和控制。该系列博客贴文的目的是从基础开始介绍重要的结晶概念,并为在这一有意思的领域里工作的人们指点出很多现有的信息资源。

我们可以从几个定义开始:

  • 结晶:分子、原子或离子从其它相(通常为液体溶液、熔融、或气体)转成为固体晶体的过程。
  • 晶体:由分子、原子或离子按某种固定的重复性三维排布所组成的固体。
  • 沉淀:定义沉淀有一点难。对有些人来讲,它既是快速(或许失控)的结晶过程。对另一些人,沉淀意味着由于化学反应导致的晶体生成过程。它的使用也随工业领域而改变;制药行业通常使用“结晶”一词,而“沉淀”则是化学工业的行话。对于此博客来讲,这两个词将等同使用来指结晶。从广义上讲,沉淀不只限于结晶,它还包括非晶体颗粒固体以及液滴的形成。

各种结晶工艺过程在工业上的广泛使用或许能归功于结晶过程作为即分离又纯化的一个工艺步骤这一事实。非常快速地便可以生成并分离出具有期望纯度的晶体产物。尽管这一优势很明显,人们仍然需要理解和控制结晶过程,才能确保获得所期望的晶体产品质量,并确保结晶工艺过程的效率和成本有效性。

下述引言从强调确保产品和工艺质量的角度很好地总结了这一点。

产品特性

“原料药(活性药物组分晶体产品)的结晶对产品质量(像化学纯度及正确晶型)特别关键,对其必须进行严格控制才能满足产品质量指标。”

工艺特性

API结晶工艺和晶体特性对下游工艺过程有明显的影响。比如,超细颗粒或宽颗粒分布可能引起过滤慢和干燥效能差,这可能成为整个生产过程中的一个主要瓶颈1。”

在该系列的下一个博贴里,我们将介绍一些驱动结晶过程的不同方法、并建立结晶工艺设计的基础 – 溶解度。

1.       Kim S. et al., “Control of the Particle Properties of a Drug Substance by Crystallization Engineering and the Effect on Drug Product Formulation” Organic Process Research & Development, 9, 894-901 (2005)

如果您有兴趣与其他结晶工作者或爱好者讨论,考虑加入已有600多成员的LinkedIn结晶社团

AIChE征集结晶技术报告

美国化学工程师学会(AIChE)2011年会将在十月16-21 日于Minneapolis, MN 举行,有几个分会将重点讨论结晶于蒸发。

2011 AIChE
Bing-Shiou Yang (Principal Engineer, Boehringer Ingelheim) 和我将主持用于结晶开发与生产的PAT 分会。本分会欢迎新进的把工艺过程分析技术(PAT)应用于结晶工艺过程开发和生产的技术报告。 PAT应用技术可包括各种光谱分析法(FTIR, NIR, Raman)、颗粒与计数技术、以及其它不同在线监测或传感技术。尤其感兴趣的是驱动结晶过程开发的创新性途径和手段。 Continue reading

IFPAC 2011上谈PAT与颗粒大小分析

2010工艺过程中的颗粒论坛会上的三位报告者将在2011年1月21日于(美国)马里兰州的巴尔的摩举行的IFPAC (工艺过程分析技术国际论坛)上作报告。Johnson & Johnson的Steve Mehrman和Merck & Co. 的James Butz被排在周五上午的“颗粒特征分析超声光谱”IFPAC 的第五分会作报告。Bristol-Myers Squibb的Kevin Macias将在周五上午的“药品开发与生产的控制战略”第七分会中作报告。 Continue reading