Tag Archives: 颗粒大小

在线分析颗粒大小、形状、及数量的历史:Lasentec® FBRM®

Lasentec History二十五年来, FBRM® 技术一直用于实时监测工艺过程中自然存在的颗粒与液滴。自2001年收购了Lasentec® (Lasentech)之后,梅特勒-托利多不断地改进开发在线颗粒大小、形状、和数量分布的测量技术。目前,已有数千个FBRM® 和PVM® 系统安装在世界各地,从研发实验室到生产厂。

我想人们会有兴趣看看Lasentec®、FBRM® 和PVM® 技术的历史:

2011

新一代 FBRM® (G Series) 上市,在原位颗粒测量的准确性和灵敏度上具有突破性进展。

  • 通过软件对粘贴的颗粒进行校正,从而增强对工艺过程的理解
  • 对颗粒分布的高分辨率提供更准确的信息
  • 可互换的探头配置平台拓宽应用性
  • 增强的探头牢靠度减少维修服务次数

2009

梅特勒-托利多荣获Powtech/TechnoPharm 创新奖 ,奖励其将FBRM®应用于在线成粒过程的开发。

2007

小规模 19毫米直径的具有显微镜质量显像的PVM® ,即使是在高固体浓度下。

2002

8毫米设计直径的小型FBRM、和深入管道安装式FBRM®

2001

梅特勒-托利多收购Lasentec®

2000

19毫米直径压缩空气推动的FBRM®

1996

用于在线颗粒视像和测量的第一个PVM®

1990

第一个基于探头的、实时、原位颗粒特征分析FBRM®

1986

Lasentec® 因其离线FBRM®技术获得“研发一百强奖”(R&D 100 Award

高度的分辨率、快速的理解、直观的颗粒测量

在线颗粒大小测量技术被用于快速地:

  • 理解颗粒系统随工艺过程参数变化而发生的相应变化
  • 优化颗粒系统从而改进工艺性能及产品质量
  • 控制颗粒系统从而获得颗粒大小分布终点的一致性、批次的重复性、和工艺的稳定性

颗粒大小分析只有当原位颗粒测量方法具有代表性并容易理解时,人们才可能实现相应的工艺过程优化与控制。基于20年在线颗粒测量的经验,新一代的聚光反射测量(FBRM) 被重新设计后针对每一个实验具备更高的玄长测量分辨率,并且提供更加直观的信息。

科学家和工程师们用FBRM来跟踪工艺过程中自然存在状态下的颗粒与液滴。 新一代的FBRM技术 – FBRM G400 和 FBRM G600 – 增强了分辨率,同时提供对颗粒系统的直观理解。这使其使用者们可以在更短的时间内提高实验通量并改进产品质量。

请观看新的在线颗粒特征分析的突破性性能报告。

该报告的重点包括:

先进的信号处理

  • 更高的玄长分布分辨率为每一个实验提供更多的信息量
  • 粘贴颗粒的矫正改进信息的可靠性以及对工艺的理解

FBRM G400 先进的硬件开发

  • 可互换的探头平台改进多用适应性和可携带性
  • 改进的探头牢靠程度降低维修频率

结晶与沉淀介绍

结晶触及我们生活的方方面面,从我们吃的食品和用的药物到我们用来给社区生活提供能量的燃料。大部分医药产品的生产制造过程中至少有一步是结晶步骤。我们厨房里用的食盐和白糖均为晶体。不希望发生的气体水合物结晶现象在最近的墨西哥湾漏油事件中起了作用。

Crystallization

工作在世界各地许多企业的科学家和工程师们每天都需要对结晶工艺过程进行理解,优化和控制。该系列博客贴文的目的是从基础开始介绍重要的结晶概念,并为在这一有意思的领域里工作的人们指点出很多现有的信息资源。

我们可以从几个定义开始:

  • 结晶:分子、原子或离子从其它相(通常为液体溶液、熔融、或气体)转成为固体晶体的过程。
  • 晶体:由分子、原子或离子按某种固定的重复性三维排布所组成的固体。
  • 沉淀:定义沉淀有一点难。对有些人来讲,它既是快速(或许失控)的结晶过程。对另一些人,沉淀意味着由于化学反应导致的晶体生成过程。它的使用也随工业领域而改变;制药行业通常使用“结晶”一词,而“沉淀”则是化学工业的行话。对于此博客来讲,这两个词将等同使用来指结晶。从广义上讲,沉淀不只限于结晶,它还包括非晶体颗粒固体以及液滴的形成。

各种结晶工艺过程在工业上的广泛使用或许能归功于结晶过程作为即分离又纯化的一个工艺步骤这一事实。非常快速地便可以生成并分离出具有期望纯度的晶体产物。尽管这一优势很明显,人们仍然需要理解和控制结晶过程,才能确保获得所期望的晶体产品质量,并确保结晶工艺过程的效率和成本有效性。

下述引言从强调确保产品和工艺质量的角度很好地总结了这一点。

产品特性

“原料药(活性药物组分晶体产品)的结晶对产品质量(像化学纯度及正确晶型)特别关键,对其必须进行严格控制才能满足产品质量指标。”

工艺特性

API结晶工艺和晶体特性对下游工艺过程有明显的影响。比如,超细颗粒或宽颗粒分布可能引起过滤慢和干燥效能差,这可能成为整个生产过程中的一个主要瓶颈1。”

在该系列的下一个博贴里,我们将介绍一些驱动结晶过程的不同方法、并建立结晶工艺设计的基础 – 溶解度。

1.       Kim S. et al., “Control of the Particle Properties of a Drug Substance by Crystallization Engineering and the Effect on Drug Product Formulation” Organic Process Research & Development, 9, 894-901 (2005)

如果您有兴趣与其他结晶工作者或爱好者讨论,考虑加入已有600多成员的LinkedIn结晶社团

AIChE征集结晶技术报告

美国化学工程师学会(AIChE)2011年会将在十月16-21 日于Minneapolis, MN 举行,有几个分会将重点讨论结晶于蒸发。

2011 AIChE
Bing-Shiou Yang (Principal Engineer, Boehringer Ingelheim) 和我将主持用于结晶开发与生产的PAT 分会。本分会欢迎新进的把工艺过程分析技术(PAT)应用于结晶工艺过程开发和生产的技术报告。 PAT应用技术可包括各种光谱分析法(FTIR, NIR, Raman)、颗粒与计数技术、以及其它不同在线监测或传感技术。尤其感兴趣的是驱动结晶过程开发的创新性途径和手段。 Continue reading

在线监测颗粒粉碎过程–EMS和IIPF

我最近有幸与一组非常有才华的在EMS和国际医药研究院(IIPF)工作的科学家们合作。EMS和IIPF是位于巴西Sao Paulo 西南面约一百英里的Hortolândia城市的两家制药公司。我们做了一个很有意思的项目,在原料药(API)的湿磨过程中用FBRM跟踪颗粒径的减小。传统上人们用离线激光衍射来跟踪这一工艺过程,但是这种方法被证明既费时又不准确还有潜在人身危害。

颗粒粉碎过程通过用FBRM原位跟踪颗粒的裂碎与磨碎过程,该研究组可以实时识别出每一釜湿磨的目标终点。他们还与离线激光衍射分析数据进行了关联,并得出结论“在线FBRM的使用不仅确保了一致的产品指标还使工艺过程时间降到最短”。而且,通过揭示其材料的裂碎动力学,他们得到了对工艺过程的重要理解。这种信息可以用来确保工艺放大和技术转手的成功。

与Andre Rosa, Fabiana Ribeiro 和Jose Martins (IIPF) 以及Renato Carneiro 和Ettamyr Catteli (EMS)一起进行这一项目非常愉快。他们起草了一个应用短文:在线监测用高剪切力混合器进行颗粒粉碎的过程。要得到FBRM与离线颗粒测量技术(如激光衍射、过筛)之间的关联方面的详细信息,请查看我同事Eric Dycus的 FBRM®与工艺效率和产品质量直接关联的网络研讨会

AIChE 2010中的PAT–实时监测制粒过程和滚动致密过程

在盐湖城举行的2010 美国化工学会 (AIChE) 年会中,一些出席良好的分会与质量源于设计(QbD) 和工艺过程分析技术(PAT)相关。

美国化工学会年会最近,我在PharmaQbD 博客上以嘉宾身份发表了一个对QbD 和PAT 的简要回顾,题为“如果QbD 是地图,PAT即是GPS”。本博客贴文的出发点是QbD 和PAT以互补的方式来应用是最有效的。在AIChE年会中,可以看到许多好的例子,它们基于将通过QbD实验开发出来的工艺模型应用到后期开发和生产上,在PAT的指导下进行实时监测和控制。

许多讨论关注到药品制造的连续工艺过程,反映了制药生产技术的明显提高。然而,这种提高也同时证实了对(通过QbD)理解工艺过程的需求,以便与工艺过程监测(PAT的一关键要素)相匹配。例如,好几个报告介绍了在滚动致密过程中连续监测颗粒大小的分布,从而提供测量和控制关键质量属性的潜在能力。颗粒(细粒)大小直接影响到粉末的流动性和可压性,通过导致最终制剂的溶出/解体特征的不同进而影响到原料药的生物活性。

如果您对应用工艺过程测量技术来实时理解颗粒和制粒系统感兴趣,我向您建议以下两个免费历届网络研讨会: