Tag Archives: 化学反应

化学动力学实验的教学方法

研究人员们(特别是有机化学师与分析化学师们)所面临的主要挑战包括需要快速地得知反应动力学,并获得足够的信息以便充分理解、鉴定和优化化学反应。这样的挑战致使研究人员们寻找新的方法来获得能使他们工作成功所需的信息。

化学反应动力学实验

在三月三十日的网络研讨会–反应动力学实验教学的创新方法–上,Seton Hall大学有机与有机金属化学系的 John R. Sowa Jr.教授介绍了如何进行基本动力学实验。Sowa 教授报告中讲得方法既可用于学术研究也可用于工业研发。

Sowa 教授的著名文章包括:

Joseph P. Simeone, John R. Sowa, Jr., “Palladium on carbon as a precatalyst for the Suzuki-Miyuara cross-coupling of aryl chlorides,” Tetrahedron, 2007, 63, 12646-12654.

Editor, Catalysis of Organic Reactions (Chemical Industries Series, Vol. 104), CRC Press, Boca Raton, Florida, 2005.

Suzuki-Miyaura Coupling with Quasi-Heterogeneous Palladium”. Conlon, D. A., Pipik, B., Ferdinand, S., LeBlond, C. R., Sowa, J. R. Jr., Izzo, B, Ho, G.-J., Williams, J. M., Shi., Y.-J., Sun, Y.-K. Adv. Synth. Catal., 2003, 345, 931-935.

降低溶解度与驱动结晶过程的常用方法

这是结晶专题系列的第二个博贴。如果您还没有看此系列的第一个博贴,您可以在此找到它: 结晶与沉淀介绍

结晶工艺大部分结晶工艺过程的起始点是在一个溶液的饱和浓度下。结晶过程通常是通过降低溶液中所含产物的溶解度来实现,比如采用降温、加反溶剂、或这两者相结合的方法。另一种常用的驱动结晶过程的方法是通过化学反应,既将两个或更多反应物相混合生成一不溶性固体产物,常见的是酸与碱反应生成盐的例子。

结晶方法的选择受不同因素的影响而变化。比如,蛋白质及其晶体对温度敏感, 因而不适宜使用温度控制法,导致加反溶剂法成为最常用的结晶方法。对于很多结晶工艺过程而言,冷却法会具有优势,因为它是可逆的,一旦不佳状况出现其饱和溶液可以被重新加热。

饱和溶液与溶解度:
在一给定温度下,可溶解在一给定溶剂中的溶质的量有一个上限。在这一限度点,溶液处于饱和状态。此状态下,溶质溶解在一单元溶剂中的量即为溶解度。

单位:溶解度通常表示为

  • 克溶质/100克溶剂
  • 克溶质/升溶剂
  • 摩尔分数
  • 摩尔%

以下图示,常知为溶解度曲线,清晰地表现出某一物料的溶解度随温度和溶剂的变化。将溶解度对温度作图,科研人员们开始建立为开发出理想的结晶工艺过程所需的设计基础。在此案例中,其溶质在溶剂A中的溶解度高,这意味着单位体积的溶剂中可结晶出的产物更多。在所有温度下,溶剂C中的溶解度都低,这表明它可以被用作结晶此物料的反溶剂。对一指定结晶工艺过程,溶解度曲线也揭示出其理论产率。比如,如果在60°C饱和状态下100克溶剂中最多可溶50克产物,将其冷却到10°C后饱和状态下每100克溶剂中只能溶10克产物,这就是说,每100克溶剂里可以最多结晶出40克产物。这种计算使科研人员和工程师们可以将实际产率与理论产率相比较,从而确定结晶工艺过程的效率。

溶解度

许多技术可用于测量溶解度曲线;同时,预算化合物在不同溶剂中的溶解度方面的新近研究也渐显希望。以下参考资料为更进一步学习此论题提供一良好的起点:

重量分析:

Howard K. Zimmerman, The Experimental Determination of Solubilities, Jr. Chem. Rev., 1952, 51 (1), pp 25–65

Granberg and Rasmusson, Solubility of Paracetamol in Pure Solvents, J. Chem. Eng. Data, 1999, 44 (6), pp 1391–139

动态方法:

P. Barrett and B. Glennon, “Characterizing the Metastable Zone Sidth and Solubility Curve Using Lasentec FBRM and PVM,” Trans ICHemE, vol. 80, 2002, pp. 799-805.

创新性方法:

M. Barrett, M. McNamara, H. Hao, P. Barrett, and B. Glennon, “Supersaturation tracking for the development, optimization and control of crystallization processes,” Chemical Engineering Research and Design, vol. 88, Aug. 2010, pp. 1108-1119.

如果您有兴趣与其他结晶工作者或爱好者讨论,考虑加入已有600多成员的LinkedIn结晶社团 

有机化学教学有怎样的变化?

传统的教学方式指导有机化学的学生们使用标准的离线分析方法来分析化学反应,使用像高效液相色谱(HPLC)、核磁共振(NMR)、和气相色谱(GC)分析手段。

尽管这些分析手段提供最终产品的特性,它们不提供关于反应机理、中间产物或副产物的关键反应信息。通过ReactIR进行原位FTIR分析可在反应进行的同时实时分析和显现不同关键反应成分浓度的变化。这种信息使有机化学学生们得知并理解整个反应的动态过程,乃至反应途径和机理,从而大大增强教学效果。

http://cn.mt.com/cn/zh/home/events/webinar/live/chemistry5.html?=US_AC_eAdv_zhBlog

“梅特勒-托利多的ReactIR改变了我教有机化学的方法。它的实时分析能力使我可以设计出更有激励性的教学实验,把学生们的注意力放在一个有机反应过程中在发生什么。就像观看一个化学反应的电影,当他们眼睁睁地看着反应物在消失同时产物在生成学生们感到惊奇。”
John Sowa
有机和金属有机化学教授
Seton Hall大学

在十一月十七日的“将原位FTIR分析用于有机化学的新进展” 网络研讨会中,Paul Scholl将谈论在教学研究上通过ReactIR进行原位FTIR分析是怎样得到利用的。

如何在现实反应条件下进行化学研究

使用像高压液相色谱(HPLC)、核磁共振(NMR)、和气相色谱(GC)这些传统离线方法来分析化学反应有一个共同的问题:当分析样品从反应体系里取出之后,样品的成分或性质很可能已不代表反应体系里的真实状况,因而导致明显的分析误差。原位傅立叶变换红外(FTIR)分析是解决这种问题的方法。使用原位FTIR分析来在反应器中的现实条件下进行化学研究是理想的,因为它避免传统取样分析法带来的时间滞后和各种误差。

用ReactIR实时原位分析化学反应今天,我想回答一个常提出的问题:

为何用原位FTIR分析取代离线分析方法进行化学反应分析?

  • 一个实际存在的关键的中间产物在离线样品里可能已经消失了
  • 取样时不小心或不可避免引入的空气可以改变化学条件
  • 因反应毒性之高需要防止接触反应体系
  • 反应在高压和/或极高温度下进行 — 取样可能改变化学成份,致使分析不合格

原位FTIR分析可用于分析几乎所有化学反应,包括:

  • 腐蚀性化学反应
  • 高温高压反应
  • 固液多项反应体系
  • 带水或有机溶剂的反应体系
  • 酸性或碱性反应体系

十一月十七日, Paul Scholl 将在“学术界在有机化学方面使用实时原位FTIR的新进展”网络研讨会中更具体地讲解本论题。Paul会谈论以下领域里近来发表的使用原位FTIR分析来更好地理解化学反应的案例: 有机合成、催化、金属有机、高分子合成、及反应动力学。