Category Archives: 颗粒系统特征分析

工艺过程参数对过饱和度、晶体大小与形状的影响

这是结晶专题系列的第五个博贴。如果您还没有看此系列中前面的博贴,可以在此找到它们:

下图显示了过饱和度通过成核和增长间的竞争与晶体大小分布的关系。在本博贴里,我们来看如何通过调节工艺过程参数(比如反溶剂添加速率)使过饱和度能够得到控制。在下一个博贴里,我们会稍微深入一点进入到结晶动力学的基础;而现在让我们来研究一个有意思的案例:用原位监测工具来监测过饱和度并跟踪相应对晶体大小分布的影响。

这个例子考察对不加晶种的苯甲酸从乙醇-水中结晶出来的过程,主要观察反溶剂添加速率对晶体大小、形状和分布的影响。用水作反溶剂,进行两个不同添加速率的实验:一个低速 (0.1g/s)、一个高速(0.2g/s)。过饱和度用ReactIR来监测,颗粒数与尺寸用FBRM 来分析,晶体的大小与形状用PVM来确定。

将制备好的苯甲酸在乙醇中的不饱和溶液维持在25ºC下恒温。苯甲酸是一个有机化合物,难溶于水但溶于乙醇,文献中没有报道它有已知多晶型。在固定的0.1 g/s 和0.2 g/s的速率下添加水,它们导致的结晶过程用原位工艺过程分析工具来监测。

图1表示出每一实验所得到的溶液浓度降低曲线与溶解度曲线相重叠。从饱和度的变化可以看出溶液开始时不饱和的,随着水的加入溶液浓度逐渐超过溶解度进入过饱和。随着晶核的生成溶液的浓度不断降低,并保持接近溶解度曲线, 在反溶剂添加的终点降至溶解度。过程中过饱和度随反溶剂浓度的实时变化在图2中可以清楚地看出。

很明显,在较高的添加速率下,过饱和度较高 ­—  一个重要的结果!一般情况下,快速的冷却或添加速率导致高的过饱和度。这是因为晶体的成核与增长速率不足以立即消耗掉所产生的过饱和度,所以随着结晶过程的进展过饱和度便得以积累。

从前面讲过的内容我们知道过饱和度高会导致成核主导的结晶过程,晶体增长甚少。图3表示的是在上述两个实验的终点FBRM测得的颗粒分布结果 ­:很明显,快速添加所得的分布显示出大量更多的小颗粒,而慢速添加所得的分布则显示出更多的大颗粒。

不仅仅是晶体大小受工艺参数变化的影响,晶体的形状也受影响。实验终点的PVM 图像表明了这一点,即慢速添加导致了大的、规则形状的长方板,而快速添加产生了细针状晶体致使容易结块。

颗粒分布

颗粒形状

上述研究案例表明了工艺过程参数的变化可以直接影响过饱和度的实时程度乃至晶体的大小、分布及形状。

在本系列的下一个博贴里,我们会稍微深入一点进入到结晶动力学的基础。同时,您也许会对这一网络研讨会和文章感兴趣:

为开发与优化结晶工艺过程进行”无”标定过饱和度评估与控制

M. Barrett, M. McNamara, H. Hao, P. Barrett, and B. Glennon, “Supersaturation tracking for the development, optimization and control of crystallization processes [为开发、优化和控制结晶工艺跟踪过饱和度],” Chemical Engineering Research and Design, vol. 88, Aug. 2010, pp. 1108-1119.

如果您有兴趣与其他结晶工作者或爱好者讨论,考虑加入已有600多成员的LinkedIn结晶社团

晶体大小与形状分布的重要性

这是结晶专题系列的第四个博贴。如果您还没有看此系列的前三个博贴,可以在此找到它们: 结晶与沉淀介绍降低溶解度与驱动结晶过程的常用方法过饱和度:晶体成核与增长的驱动力

下面这组PVM显像清晰地展示了复杂的晶体大小、形状与结构。从大圆“石砣”到精美的“枝状”,晶体产物往往发生了变化, 给有效分离及下游操作带来挑战。

结晶之后通常紧跟的一步是过滤或离心分离,晶体的大小与形状可以严重影响这一单元操作的效率。如果设计了一个用一小时就完成的结晶过程,但它的后续过滤需要二十四小时,这不是高效率!

再来看一下这些 PVM显像 ,可以获得一些有关这些不同的晶体产物会如何影响过滤的线索。

a.     这些晶体可能会过滤得快且重复性好。这种较大的石砣形状造成很多间隙使滤液快速通过。

b.      这样的平板状可能是最难过滤的一种。板状容易重叠式堆积,有效地形成一个阻碍滤液通过的晶体层。这便导致过滤时间长且有可能变化,取决于晶体是如何从结晶釜排出的以及如何在过滤布上堆积的。

c.       这是有一个过滤时间可能会长的例子。细小颗粒会将较大的晶体留出的间隙堵上,致使滤液难以通过晶体床层。这是一个常见的问题,因为许多结晶工艺过程都设计有一个最终的快速冷却或快速添加反溶剂,这会导致过多的二次成核。此外,很多情况下人们会在最后将搅拌速度提高来帮助排泄釜料,这便会导致晶体的破碎。  

d.      这一显像比许多人想象的要更常见,至少是在加晶种的有机化合物结晶体系里。像这样晶体形状在显微镜片上恐怕是看不到的,因为取样和备样的过程会弄碎其结构。而PVM展现出这一精美的枝状结构。这样的枝状结构往往会在加研磨了的晶种的结晶过程中形成。晶体表面的不完善导致晶体从这些不完善处生长,因而从晶核长出许多长晶枝。很难预测像这样的形状会如何过滤,但是它很可能破碎,进而可能带来过滤时间的变化。

影响过滤过程只是结晶过程中的颗粒大小的重要性之一。对于很多产品,晶体的大小影响产品的有效性, 比如医药在人体中的吸收速率或高能材料的燃烧速率。工艺过程的其它方面也可能受到颗粒大小和形状的影响,比如流动性和离析性。

一个有趣的假想实验是考虑上面所显示的几种晶体会如何流动?

在本系列的下一个博贴里,我们将谈论如何设计结晶工艺过程从而使获得的晶体产品具有理想的大小与形状。同时,这个参考研究案例很好地描绘了一个手性结晶工艺的优化以改进离心分离、减少批次失败、提高产品质量: 通过理解二次成核对一个双重手性中心动力学分离结晶过程的改进

如果您有兴趣与其他结晶工作者或爱好者讨论,考虑加入已有600多成员的LinkedIn结晶社团

在线分析颗粒大小、形状、及数量的历史:Lasentec® FBRM®

Lasentec History二十五年来, FBRM® 技术一直用于实时监测工艺过程中自然存在的颗粒与液滴。自2001年收购了Lasentec® (Lasentech)之后,梅特勒-托利多不断地改进开发在线颗粒大小、形状、和数量分布的测量技术。目前,已有数千个FBRM® 和PVM® 系统安装在世界各地,从研发实验室到生产厂。

我想人们会有兴趣看看Lasentec®、FBRM® 和PVM® 技术的历史:

2011

新一代 FBRM® (G Series) 上市,在原位颗粒测量的准确性和灵敏度上具有突破性进展。

  • 通过软件对粘贴的颗粒进行校正,从而增强对工艺过程的理解
  • 对颗粒分布的高分辨率提供更准确的信息
  • 可互换的探头配置平台拓宽应用性
  • 增强的探头牢靠度减少维修服务次数

2009

梅特勒-托利多荣获Powtech/TechnoPharm 创新奖 ,奖励其将FBRM®应用于在线成粒过程的开发。

2007

小规模 19毫米直径的具有显微镜质量显像的PVM® ,即使是在高固体浓度下。

2002

8毫米设计直径的小型FBRM、和深入管道安装式FBRM®

2001

梅特勒-托利多收购Lasentec®

2000

19毫米直径压缩空气推动的FBRM®

1996

用于在线颗粒视像和测量的第一个PVM®

1990

第一个基于探头的、实时、原位颗粒特征分析FBRM®

1986

Lasentec® 因其离线FBRM®技术获得“研发一百强奖”(R&D 100 Award

增强对结晶工艺过程的理解

科学家与工程师们经常要面对的一个挑战是如何做到增强对结晶工艺过程的理解。

EasyMax为使这些科学家与工程师们完成大量的所需工作提供了一个即功能强大又使用便捷的实验平台。看到EasyMax已被他们欢迎采纳,尤其是针对结晶工作,使人感到欣慰。Simon Rea开发了一个方法,使EasyMax更适于颗粒特征分析:

结晶终于,您可以在您的EasyMax 里同时使用FBRM和PVM了! 这一新的PTFE封盖使您有可能观察到:

  • 多晶型/晶习的改变
  • 晶种添加行为
  • 相分离
  • 工艺过程中通常的颗粒/液滴的变化

并且,这可在体积小到30毫升条件下实现!当您要放大至1升时,您还可以把同一个PVM拿到那个规模的实验中使用

要通过例子看您可以在EasyMax 里同时使用FBRM和PVM来做什么,请浏览由固态制药团队(SSPC)的Mark Barrett所作的 从实验室到生产厂反溶剂添加结晶过程的优化与放大网络研讨会系列

高度的分辨率、快速的理解、直观的颗粒测量

在线颗粒大小测量技术被用于快速地:

  • 理解颗粒系统随工艺过程参数变化而发生的相应变化
  • 优化颗粒系统从而改进工艺性能及产品质量
  • 控制颗粒系统从而获得颗粒大小分布终点的一致性、批次的重复性、和工艺的稳定性

颗粒大小分析只有当原位颗粒测量方法具有代表性并容易理解时,人们才可能实现相应的工艺过程优化与控制。基于20年在线颗粒测量的经验,新一代的聚光反射测量(FBRM) 被重新设计后针对每一个实验具备更高的玄长测量分辨率,并且提供更加直观的信息。

科学家和工程师们用FBRM来跟踪工艺过程中自然存在状态下的颗粒与液滴。 新一代的FBRM技术 – FBRM G400 和 FBRM G600 – 增强了分辨率,同时提供对颗粒系统的直观理解。这使其使用者们可以在更短的时间内提高实验通量并改进产品质量。

请观看新的在线颗粒特征分析的突破性性能报告。

该报告的重点包括:

先进的信号处理

  • 更高的玄长分布分辨率为每一个实验提供更多的信息量
  • 粘贴颗粒的矫正改进信息的可靠性以及对工艺的理解

FBRM G400 先进的硬件开发

  • 可互换的探头平台改进多用适应性和可携带性
  • 改进的探头牢靠程度降低维修频率

PSAIChE 生物技术:用实时颗粒特性分析优化絮凝过程

西雅图〔美国华盛顿州港市〕地区的生物技术众所周知,所以我并不惊奇在十一月举行的Puget Sound 美国化学工程师学会 (AIChE) 会议将重点放到了Amgen的细胞发酵工艺过程上。Amgen的Anna Senczuk在此次AIChE会议上作了这一报告:颗粒分布和胆固醇高低作为细胞培养菌絮凝和过滤性能的预报因子

随着近年来细胞发酵技术的提高,大部分细胞发酵过程每釜所含细胞密度较高。细胞越多蛋白质含量越高,产物产率便增加。对具有大量细胞要警戒的是去除细胞的工艺过程。事实证明传统的细胞去除方法效率不佳。

Anna Senczuk的研究工作一部分是确定如何应用絮凝方法来除去来自细胞培养菌的固体。絮凝技术已在各种工业领域使用多年,包括水清洁、纸浆/矿浆、和造纸业。作为细胞去除项目的一部分,Anna研究并开发出了一个新型的、改进了的、使用絮凝和传统细胞去除技术的工艺过程。

在此项目中, Anna的研究目的包括:

  • 理解絮凝在其工艺过程中如何起作用
  • 颗粒分布分析能否帮助优化絮凝?
  • 颗粒分布与过滤特性之间是否直接相关?

Anna用在她研究中的各种方法包括FBRM (聚光反射测量), SHC过滤作为一种分析手段,和脂类分析(过滤器的筛选和吸附特性)。FBRM是一个原位颗粒特性分析技术,测量工艺过程中真实存在的细胞絮凝粒/碎片。实时测量所得信息然后与其它技术的结果(像过滤速率 )相关联,从而对工艺过程获得理解并予以优化。

(此前我也曾讨论过絮凝过程,请看我的博贴:Why Is Canada Reducing Oil Sand Tailing Ponds?

为何测量工艺过程中或开发中的颗粒或液滴分布?

继之前对液体剂量制剂的介绍,我想延续讨论一下:为何测量工艺过程中或开发中的颗粒或液滴分布? Continue reading

工艺过程开发会议, Weggis, 瑞士

工艺过程开发会议

我高兴地宣布 第十八届国际工艺过程开发会议 (IPDC) 将于2011年9月25-29日在瑞士Weggis举行。今年的会议将注重于制药、精细与特种化学品工业里的从化合物开发到生产工作流程:

  • 化学研究与开发
  • 工艺过程特征分析和结晶
  • 工艺过程安全与放大
  • 生产

第十八届国际工艺过程开发会议 的特殊聚焦领域是:

  • 工艺过程分析技术/质量源与设计 (PAT/QbD)
  • 连续工艺过程与流动化学
  • 动力学

我感到兴奋因为这次会议将汇聚来自不同跨国和当地的化学与制药公司的各种技术报告和参会人员。这些报告会反映常见的、以及某公司特定的解决问题的途径,并给参会者们提供一个讨论的平台。幸运的是大部分知名跨国制药、精细与特种化学品公司都出席我们的国际工艺过程开发会议。

如果您没能参加我们的第十七届国际工艺过程开发会议,您可以在此阅读部分的会议报告。

IFPAC 2011上谈PAT与颗粒大小分析

2010工艺过程中的颗粒论坛会上的三位报告者将在2011年1月21日于(美国)马里兰州的巴尔的摩举行的IFPAC (工艺过程分析技术国际论坛)上作报告。Johnson & Johnson的Steve Mehrman和Merck & Co. 的James Butz被排在周五上午的“颗粒特征分析超声光谱”IFPAC 的第五分会作报告。Bristol-Myers Squibb的Kevin Macias将在周五上午的“药品开发与生产的控制战略”第七分会中作报告。 Continue reading

在线监测颗粒粉碎过程–EMS和IIPF

我最近有幸与一组非常有才华的在EMS和国际医药研究院(IIPF)工作的科学家们合作。EMS和IIPF是位于巴西Sao Paulo 西南面约一百英里的Hortolândia城市的两家制药公司。我们做了一个很有意思的项目,在原料药(API)的湿磨过程中用FBRM跟踪颗粒径的减小。传统上人们用离线激光衍射来跟踪这一工艺过程,但是这种方法被证明既费时又不准确还有潜在人身危害。

颗粒粉碎过程通过用FBRM原位跟踪颗粒的裂碎与磨碎过程,该研究组可以实时识别出每一釜湿磨的目标终点。他们还与离线激光衍射分析数据进行了关联,并得出结论“在线FBRM的使用不仅确保了一致的产品指标还使工艺过程时间降到最短”。而且,通过揭示其材料的裂碎动力学,他们得到了对工艺过程的重要理解。这种信息可以用来确保工艺放大和技术转手的成功。

与Andre Rosa, Fabiana Ribeiro 和Jose Martins (IIPF) 以及Renato Carneiro 和Ettamyr Catteli (EMS)一起进行这一项目非常愉快。他们起草了一个应用短文:在线监测用高剪切力混合器进行颗粒粉碎的过程。要得到FBRM与离线颗粒测量技术(如激光衍射、过筛)之间的关联方面的详细信息,请查看我同事Eric Dycus的 FBRM®与工艺效率和产品质量直接关联的网络研讨会