Process Analytical Technology (PAT) for BioCatalysis

Below are citations from interesting papers that discuss Process Analytical Technology (PAT) for BioCatalysis, highlighting faster development and optimization of scalable processes:
1. Bird P. A.,, D.C.A. Sharp, and, J.M. Woodley. Near-IR Spectroscopic Monitoring of Analytes during Microbially Catalysed Baeyer−Villiger Bioconversions. Organic Process Research & Development, 2002, 6(4): 569-576. DOI: 10.1021/op025516c
2. Dadd M.R., D.C.A. Sharp, A.J. Pettman and C.J. Knowles. Real-time monitoring of nitrile biotransformations by mid-infrared spectroscopy. Journal of Microbiological Methods, 2000, 41(1): 69-75. DOI: 10.1016/S0167-7012(00)00138-X
3. Gab J., M. Melzer, K. Kehe, A. Richardt, M.-M. Blum. Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by in situ Fourier transform infrared spectroscopy. Analytical Biochemistry, 2009, 385(2): 187-193. DOI: 10.1016/j. ab.2008.11.012
4. Hamminga G.M., G. Mul and J.A. Moulijn. Reaction Kinetics and Intermediate Determination of Solid Acid Catalysed Liquid-phase Hydrolysis Reactions: A Real-time in situ ATR FT-IR Study. Catalysis Letters, 2006, 109(3-4): 199-206. DOI: 10.1007/s10562-006-0078-y
5. Iwaka H., S. Wang, S. Grosse, H. Bergeron, A. Nagahashi, J. Lertvorachon, J. Yang, Y. Konishi, Y. Hasegawa, and P.C.K. Lau, Pseudomonad Cyclopentadecanone Monooxygenase Displaying an Uncommon Spectrum of Baeyer-Villiger Oxidations of Cyclic Ketones, Applied and Environmental Microbiology, 2006 72 (4): 2707–2720. DOI: 10.1128/AEM.72.4.2707–2720.2006
6. Kraai G.N., J.G.M. Winkelman, J.G. de Vries, H.J. Heeres, Kinetic studies on the Rhizomucor miehei lipase catalyzed esterification reaction of oleic acid with 1-butanol in a biphasic system, Biochemical Engineering Journal, 2008, 41 (1): 87-94. DOI: 10.1016/j.bej.2008.03.011
7. Lye G.J.,, P.A. Dalby, and, J.M. Woodley. Better Biocatalytic Processes Faster: New Tools for the Implementation of Biocatalysis in Organic Synthesis. Organic Process Research & Development, 2002, 6(4): 434-440. DOI: 10.1021/op025542a
8. Pacheco R., A. Karmali, M.L.M. Serralheiro, P.I. Haris, Application of Fourier transform infrared spectroscopy for monitoring hydrolysis and synthesis reactions catalyzed by a recombinant amidase, Analytical Biochemistry, 2005, 346(1): 49-58. DOI: 10.1016/j.ab.2005.07.027
9. Park O.-J.,, S.-H. Lee, T.-Y. Park, W.-G. Chung and S.-W. Lee, Development of a Scalable Process for a Key Intermediate of (R)-Metalaxyl by Enzymatic Kinetic Resolution, Organic Process Research & Development, 2006 10 (3), 588-591. DOI: 10.1021/op050166q
10. Tao J., L. Zhao, and N. Ran, Recent Advances in Developing Chemoenzymatic Processes for Active Pharmaceutical
Organic Process Research & Development, 2007 11 (2), 259-267. DOI: 10.1021/ op060235g
11. Yang J., M.-J. Lorrain, D. Rho, P.C.K. Lau. Monitoring of Baeyer-Villiger biotransformation kinetics and fingerprinting using ReactIR 4000 spectroscopy. Industrial Biotechnology. 2006, 2(2): 138-142. DOI: 10.1089/ind.2006.2.138.
12. Yang J., S. Wang, M.-J. Lorrain, D. Rho, K. Abokitse and P.C. K. Lau. Bioproduction of lauryl lactone and 4-vinyl guaiacol as value-added chemicals in two-phase biotransformation systems. Applied Microbiology and Biotechnology, 2009, 84(5): 867-876. DOI: 10.1007/s00253-009-2026-4